Multiscale System Theory
نویسندگان
چکیده
In many applications, it is of interest to analyze and recognize phenomena occurring at different scales. The recently introduced wavelet transforms provide a time-and-scale decomposition of signals that offers the possibility of such an analysis. Until recently, however, there has been no corresponding statistical framework to support the development of optimal, multiscale statistical signal processing algorithms. A recent work of some of the present authors and co-authors proposed such a framework via models of "stochastic fractals" on the dyadic tree. In this paper we investigate some of the fundamental issues that are relevant to system theories on the dyadic tree, both for systems and signals.
منابع مشابه
Multiscale Analysis of Transverse Cracking in Cross-Ply Laminated Beams Using the Layerwise Theory
A finite element model based on the layerwise theory is developed for the analysis of transverse cracking in cross-ply laminated beams. The numerical model is developed using the layerwise theory of Reddy, and the von Kármán type nonlinear strain field is adopted to accommodate the moderately large rotations of the beam. The finite element beam model is verified by comparing the present numeric...
متن کاملA Dynamical Similarity Approach to the Foundations of Complexity and Coordination in Multiscale Systems
I review a number of cognate issues that, taken together, pertain to the creation of a non-reductionistic theory of multiscale coordination and present one candidate theory based on the principle of dynamical similarity.
متن کاملMultiscale Structure in Eco-Evolutionary Dynamics
In a complex system, the individual components are neither so tightly coupled or correlated that they can all be treated as a single unit, nor so uncorrelated that they can be approximated as independent entities. Instead, patterns of interdependency lead to structure at multiple scales of organization. Evolution excels at producing such complex structures. In turn, the existence of these compl...
متن کاملMultiscale Homogenization in Kirchhoff’s Nonlinear Plate Theory
The interplay between multiscale homogenization and dimension reduction for nonlinear elastic thin plates is analyzed in the case in which the scaling of the energy corresponds to Kirchhoff’s nonlinear bending theory for plates. Different limit models are deduced depending on the relative ratio between the thickness parameter h and the two homogenization scales ε and ε.
متن کاملA Review of Two Multiscale Methods for the Simulation of Macromolecular Assemblies: Multiscale Perturbation and Multiscale Factorization
Many mesoscopic N -atom systems derive their structural and dynamical properties from processes coupled across multiple scales in space and time. That is, they simultaneously deform or display collective behaviors, while experiencing atomic scale vibrations and collisions. Due to the large number of atoms involved and the need to simulate over long time periods of biological interest, tradition...
متن کاملMultiscale Multiphysic Mixed Geomechanical Model for Deformable Porous Media Considering the Effects of Surrounding Area
Porous media of hydro-carbon reservoirs is influenced from several scales. Effective scales of fluid phases and solid phase are different. To reduce calculations in simulating porous hydro-carbon reservoirs, each physical phenomenon should be assisted in the range of its effective scale. The simulating with fine scale in a multiple physics hydro-carbon media exceeds the current computational ca...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006